JOURNAL OF ALGORITHMS 6, 275-282 (1985)

A Theoretical Analysis of Backtracking in the
Graph Coloring Problem

EDWARD A. BENDER
University of California at San Diego, La Jolla, California 92093
AND

HERBERT S. WILF

University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received February 13, 1984

The graph coloring problem is: Given a positive integer K and a graph G. Can the
vertices of G be properly colored in K colors? The problem is NP-complete. The
average behavior of the simplest backtrack algorithm for this problem is studied.
Average run time over all graphs is known to be bounded. Average run time over all
graphs with n vertices and ¢ edges behaves like exp(Cn®/q). It is shown that similar
results hold for all higher moments of the run time distribution. For all graphs and
for graphs where lim n%/q exists, the run time has a limiting distribution as n — oo.
¢ 1985 Academic Press, Inc.

1. INTRODUCTION

The graph coloring problem is: Given a positive integer K and a graph G.
Can the vertices of G be properly colored in K colors? The problem is
NP-complete.

The backtrack algorithm that we have in mind for this problem begins by
coloring vertex 1 in color 1. In general, if vertices 1,2,..., L — 1 have been
colored, then vertex L receives the color of lowest number that is consistent
with the colors already assigned. If no such color exists, then backtrack by

* increasing the color of vertex L — 1, etc. The algorithm will not halt until
all possible assignments have been tried in this fashion, even if a proper
coloring is found. '

A graph on n labelled vertices is specified by indicating which of the
possible (") edges is present. Let each edge be present with independent
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probability p. Define a random variable X, ( p) equal to running time on a
randomly generated graph as measured by the number of nodes in the
search tree that the algorithm generates, described below. In [1] it was
shown that backtracking is an O(1) average time algorithm for all graphs;
that is, the expected value of X (1) is bounded.

In this paper we investigate the distribution of X, ( p) both for constant p
and for p = p(n) — 0. For fixed p # 0, all moments of X, ( p) are bounded
and Pr{ X,(p) = k} is independent of n when n > k. If p > C/logn, the
moments of X,(p) grow no faster than polynomially with n; else if
p = C/n'~%, they grow subexponentially. With minor modifications, these
results carry over to graphs chosen randomly from the set of those with n
vertices and g edges.

2. NOTATION AND TERMINOLOGY

Our graphs are simple and undirected, with vertex set V(G) labelled
1,2,...,|V(G)|. The set of all labelled n-vertex graphs is ¢, and the subset
with exactly g edges is &, .. If 0 < p < 1, we make ¥, into a probability
space ¥,(p) by assigning G € &, . a probability p(1 — p)"/?~9, When
p = %, this assigns each G € ¥, the same probability. Pr{G} is the prob-
ability assigned to the graph by %,( p).

An induced subgraph H of a graph G is obtained by choosing some subset
S € V(G) for the vertices of H. The edges of H are precisely all edges of G
- both of whose endpoints lie in S. We then say that H is the subgraph of G
that is induced by the set S. By H,(G) we mean the subgraph of G that is
induced by the set {1,2,...,L}.

The chromatic polynomial P(\,G) of a graph G is the polynomial in A of
degree |V(G)| such that for each K = 1,2,..., the value of P(K,G) is the
number of ways to color the vertices of G properly in the colors 1,2,..., K. ‘

The action of the backtrack algorithm, as described in the introduction,
on a graph G generates a search tree T, (G) whose nodes are arranged in
levels 0,1,...,n = |V(G)|. The node at level L =0 is the root. At level
L > 0 there is a node corresponding to each proper coloring of vertices
1,2,..., L of G in K colors. Thus there are precisely P(K, H;(G)) nodes at
level L. There is an edge between nodes v at level L and v’ at level L + 1 if
and only if they agree in the colors that they assign to vertices 1,2,..., L.
Figure 2 shows the backtrack tree T;(G) for the graph in Fig. 1. That tree
has 46 nodes, each labelled by the colors it assigns to the vertices of G. For
example, the node labelled *“12132” in Fig. 2 corresponds to coloring
vertices 1,2,3,4,5 of G in colors 1,2,1, 3,2, respectively.

We will write 8, (G) for |V (Tx(G))|. It measures the “run time” of the
algorithm. If G is chosen by %,( p), then the value of 8,(G) is a random
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variable denoted by X,( p). Our analysis can be regarded as combinatorial,
but the language of probability is convenient in this context. For the
moments of X,(p), E(X,(p)™), we shall write BY™(n, p). This is the
average of (B¢ (G))™over all G € g,(p), weighted according to probability.

3. STATEMENT OF RESULTS

The following theorems will be proved in the next section. First, as
regards the growth of the moment sequence, we have

THEOREM 1. Let p = p(n) be such that pn — o0 as n —> o0. Then for
some C(K) > 0,

Cy(K)m?/p < log(BE™(n, p)) < Co(K)m?/p (3.1)
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as n — oo. If, in addition p — 0, then
K(log K )
2p )

Next, in case of constant edge density, we will prove a good deal more,
namely

THEOREM 2. Let p € (0,1) be fixed. Then

log(B(n, p)) ~ (32)

(A) (Existence of limiting moments). For each fixed m,
lim Bg™(n, p) = BL™

exists and is finite.

(B) (Existence of probability density function). There is a function
Tk, p) 2 0 such that ¥,fx(j, p) =1 and Pr{ X, (p) =)} = fx (). p) for
nzxj.

(C) (Estimate of tail of distribution). There is a C = C(K, p) > 0 such
that, forall t = 0, Pr{ X,(p) = t} < e~ Clo81V",

Instead of using ¥,( p), we could assign equal probabilities to all graphs
in 4, .. We would use the random variable X, , in place of X,(p). Asis
usual in the theory of random graphs, our theorems would remain nearly

valid if p were replaced by g/ ('._,') The reason for “nearly” valid is that
Theorem 2(B) must then be replaced by
Jim Pr{X, =/} =/x(jp)
The proofs would be somewhat more complicated since powers of probabili-
* ties would be replaced by ratios of binomial coefficients.

We generated the complete backtrack search trees for 1000 random
graphs with n = 20, p = 4, and K = 3. The observed mean was 8{"(20, })
= 204.7 and the observed standard deviation was (coincidentally) also

' 204.7. We then repeated this with n = 40, observing a mean and standard
deviation of 199.6 and 252.0, respectively. In Table 1 we show the observed

TABLE 1
Observed Tree Size Distribution Fy(, 1) for n = 20,40

n\j 50 100 150 200 300 400 500 600 700 800 900 1000

20 144 367 573 687 .823 893 936 956 .968 .980 985 .990
40 149 358 557 680 .832 904 935 .963 .975 982 .988 992
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cumulative distributions Fx(j, p) = L, ,fx(i, p). Thus, the numerical re-

sults are already in good agreement with Theorem 2(B), i.e., that the
cumulative distribution function of search tree size approaches a limit.

4. PROOFs

Before proving the theorems, we establish some lemmas.

LEMMA 1. For some C(K) > 0,

K"(1 - p)"/*K)="2 5 S p(K, H)Pr{H)

Hey,
nt/2K)+n/2
K"(1 - p)"”
= C(K) T
Proof. Let « be a partition of {1,2,..., n} into an ordered collection of

K (possibly empty) blocks, and let S(7) be the sum of the probabilities of
those graphs in %, which are properly colored when the vertices in the ith
block of « are assigned color i. Then

Y P(K,H)Pr{H)} =Y S(x). (4.1)

HeZ, L g

A graph G will contribute to S(w) if and only if for each i none of the
vertices in the ith block of = are joined by edges of G. If the cardinality of

the ith block is s,, we have S(7) = (1 — p)°, where ¢ = Z(;‘) Thus we can
collect terms in (4.1) according to the cardinality of the blocks of =,

T PKHP(H) = L sieg@-p)' (42)

Hed, Spoccsx

;where the sum ranges over all non-negative integers 5, adding to n. The
factor (1 — p)° never exceeds (1 — p)""/K~Y/2, Since the first factor on
the right side of (4.2) sums to K", the upper bound is proved. We can
certainly choose integers s; so that they sum to n and |5, — n/K]| < 1. We
bound (4.2) from below by this term. In this case, (;’) < (n/K + OHn/2K

and by Stirling’s formula we find

nt_ C(K)K"
sl sl S gk

.0
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LEMMA 2.

n

B(n,p)= Y ¥ Pr{H} ¥ HP(K H, (H)).
L=0 Hed, max L;=L =1
O<L sL

Proof. We have

By (n,p) = L Pr{G}IV(T((G))"

GeYg,

= ¥ Pr(G} Z P(K, HL(G))

Geyg,

= Y ZP:{G}HP(K H,(G))

Ly,.... L, GeY%,

- Y ¥ oe(r) ¥ I1P(k H,(H)).

L=0 He¥, max L,=L i=1

where the last line is based on the following two observations. If L = max L,,
then H, (G) = H (H), where H = H;(G). Second, the sum of Pr{G} over
all Ge ¥, with H= H,(G) is simply Pr{ H} because only the edges
connecting 1,..., L are restricted. O

LEMMA 3. Suppose that a > Q and b > 0 are functions of n with b/a =
o(n) and B = a = B/n? Then there are C,(B) > 0 such that for all large n

CI(B) < ‘/;;e—bl/«a Z e dL*+bL < CZ(B).
L=0

Proof We have —aL?+ bL = —ax? + b*/4a, where x=L-b/2a
Thus the expression in the lemma can be written as ya Ze~ x_ the summa-
tion rangmg over all x for which x + b/ 2a is an integer between 0 and n.
This sum is an approximation to fe ~* du with step size Ya . Since x ranges.
from —b/2a <0 to n — b/2a > 0, the interval of integration contains 0
and has length nya > VB. O

We now prove Theorem 1, beginning with the lower bound in (3.1).
Consider those terms in Lemma 2 with every L, = L and H a graph with no
edges. Thus

B p) > ¥ (1 - p)\ )kt
L=0
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Apply Lemma 3 with a= — ilog(l — p) and b= mlogK + a. Use
—log(l —p)~pasp—0.

The upper bound in (3.1) is somewhat more complicated. Remove from
the product in Lemma 2 some factor with L, = L and re-index the re-
mainder. Since there are m choices for i, we have

By (n,p)<m i Yy P(K,H)Pt{H) > ﬁP(KaHL,(H))

L=0 He%, LislLi=2

=m2"j Y P(K,H)Pr{H}(ZP(K,H,(H))) :

L=0 He¥, j=0

Since the chromatic polynomial of a j vertex graph is at most K/, we can
bound the inner sum by K **1. Using the upper bound in Lemma 1, we get

n
B (n, p) < m E K1 - p)Lz/ZK—L/ZK(LH)(m—l)
L=0

= mKm-1 i K™t(1 _p)LZ/ZK—L/Z.
L=0

Apply Lemma 3.
We now prove (3.2). With m = 1 in Lemma 2, we obtain as the inner sum
precisely the sum estimated in Lemma 1. Thus

n
2 —L R
T KL = p) 52 5 gO(n, p)

1.=0
n K"(l . p)L1/2K+L/2
> C(K) El K7 + 11.
(4.3)
In the sum on the right, the single term with
_ l -KlogK
log(1 - p)

* already contributes an amount
1 2
exp(i((;gTK)(l + o(l)))

as required in (3.2). That the sum on the left in (4.3) is also of that size
follows from Lemma 3. This completes the proof of Theorem 1.
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The existence of the limit in Theorem 2 follows from the observation that
BL™(n, p) is monotonic increasing in n by Lemma 2 and bounded above
by (3.1).

Suppose that n > j and G € ¢,. If T, (G) has precisely j nodes, then it
has no nodes at level j and so [V(Tx(G))| = j if and only if |V(T(H,(G))|
= j. Hence Pr{ X,(p) = j} equals the sum of Pr{ H} over all H € &, with
V(T (H)| = j. Call this sum fy (j, p). We must show that X f¢(j, p) = 1.
Since B{(n, p) is bounded, for every § > O there is an i such that
PriX,(p)<i}>1—8forall n.Set n=itogetL,  .fu(jp)=1-38.

For the last claim in Theorem 2, use (3.1) and Pr{ X (p)=t}t" <
By (n, p) with m = (plog1)/2C,(K).
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